1)

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Thursday 15 May 2014 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

The binary operation Δ is defined on the set $S=\{1,2,3,4,5\}$ by the following Cayley table.

Δ	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	1	1	2	3	4
$\mathbf{2}$	1	2	1	2	3
$\mathbf{3}$	2	1	3	1	2
$\mathbf{4}$	3	2	1	4	1
$\mathbf{5}$	4	3	2	1	5

(a) State whether S is closed under the operation Δ and justify your answer.
(b) State whether Δ is commutative and justify your answer.
(c) State whether there is an identity element and justify your answer.
(d) Determine whether Δ is associative and justify your answer.
(e) Find the solutions of the equation $a \Delta b=4 \Delta b$, for $a \neq 4$.
2. [Maximum mark: 19]

Consider the set S defined by $S=\{s \in \mathbb{Q}: 2 s \in \mathbb{Z}\}$.
You may assume that + (addition) and \times (multiplication) are associative binary operations on \mathbb{Q}.
(a) (i) Write down the six smallest non-negative elements of S.
(ii) Show that $\{S,+\}$ is a group.
(iii) Give a reason why $\{S, \times\}$ is not a group. Justify your answer.
(b) The relation R is defined on S by $s_{1} R s_{2}$ if $3 s_{1}+5 s_{2} \in \mathbb{Z}$.
(i) Show that R is an equivalence relation.
(ii) Determine the equivalence classes.
3. [Maximum mark: 15]

Sets X and Y are defined by $X=] 0,1[; Y=\{0,1,2,3,4,5\}$.
(a) (i) Sketch the set $X \times Y$ in the Cartesian plane.
(ii) Sketch the set $Y \times X$ in the Cartesian plane.
(iii) State $(X \times Y) \cap(Y \times X)$.

Consider the function $f: X \times Y \rightarrow \mathbb{R}$ defined by $f(x, y)=x+y$
and the function $g: X \times Y \rightarrow \mathbb{R}$ defined by $g(x, y)=x y$.
(b) (i) Find the range of the function f.
(ii) Find the range of the function g.
(iii) Show that f is an injection.
(iv) Find $f^{-1}(\pi)$, expressing your answer in exact form.
(v) Find all solutions to $g(x, y)=\frac{1}{2}$.
4. [Maximum mark: 14]

Let $f: G \rightarrow H$ be a homomorphism of finite groups.
(a) Prove that $f\left(e_{G}\right)=e_{H}$, where e_{G} is the identity element in G and e_{H} is the identity element in H.
(b) (i) Prove that the kernel of $f, K=\operatorname{Ker}(f)$, is closed under the group operation.
(ii) Deduce that K is a subgroup of G.
(c) (i) Prove that $g k g^{-1} \in K$ for all $g \in G, k \in K$.
(ii) Deduce that each left coset of K in G is also a right coset.

