

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 15 May 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

The binary operation Δ is defined on the set $S = \{1, 2, 3, 4, 5\}$ by the following Cayley table.

Δ	1	2	3	4	5
1	1	1	2	3	4
2	1	2	1	2	3
3	2	1	3	1	2
4	3	2	1	4	1
5	4	3	2	1	5

(a)	State whether S is closed under the operation Δ and justify your answer.	[2]
(b)	State whether Δ is commutative and justify your answer.	[2]
(c)	State whether there is an identity element and justify your answer.	[2]
(d)	Determine whether Δ is associative and justify your answer.	[3]
(e)	Find the solutions of the equation $a\Delta b = 4\Delta b$, for $a \neq 4$.	[3]

2. [Maximum mark: 19]

Consider the set *S* defined by $S = \{s \in \mathbb{Q} : 2s \in \mathbb{Z}\}$.

You may assume that + (addition) and \times (multiplication) are associative binary operations on $\mathbb Q$.

- (a) (i) Write down the six smallest non-negative elements of S.
 - (ii) Show that $\{S, +\}$ is a group.
 - (iii) Give a reason why $\{S, \times\}$ is not a group. Justify your answer.

[9]

- (b) The relation R is defined on S by s_1Rs_2 if $3s_1 + 5s_2 \in \mathbb{Z}$.
 - (i) Show that R is an equivalence relation.
 - (ii) Determine the equivalence classes.

[10]

2214-7209 Turn over

Sets *X* and *Y* are defined by X = [0, 1]; $Y = \{0, 1, 2, 3, 4, 5\}$.

- (a) (i) Sketch the set $X \times Y$ in the Cartesian plane.
 - (ii) Sketch the set $Y \times X$ in the Cartesian plane.

(iii) State
$$(X \times Y) \cap (Y \times X)$$
. [5]

-4-

Consider the function $f: X \times Y \to \mathbb{R}$ defined by f(x, y) = x + y and the function $g: X \times Y \to \mathbb{R}$ defined by g(x, y) = xy.

- (b) (i) Find the range of the function f.
 - (ii) Find the range of the function g.
 - (iii) Show that f is an injection.
 - (iv) Find $f^{-1}(\pi)$, expressing your answer in exact form.

(v) Find all solutions to
$$g(x, y) = \frac{1}{2}$$
. [10]

4. [Maximum mark: 14]

Let $f: G \rightarrow H$ be a homomorphism of finite groups.

- (a) Prove that $f(e_G) = e_H$, where e_G is the identity element in G and e_H is the identity element in H.
- (b) (i) Prove that the kernel of f, K = Ker(f), is closed under the group operation.
 - (ii) Deduce that K is a subgroup of G. [6]
- (c) (i) Prove that $gkg^{-1} \in K$ for all $g \in G$, $k \in K$.
 - (ii) Deduce that each left coset of K in G is also a right coset. [6]